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1. Truncated ordinary least squares estimator

As Example 2 suggests, the ordinary least squares (OLS) does not produce a consistent

estimator. We show below the same inconsistency for generic values of parameters such that

yt is strongly mixing and converges to a stationary distribution, as in Theorems 2 and 3.

Lemma S1. Suppose that Eut = 0. Then OLS is inconsistent.

Proof. Define θ = (α, β, γ)′. IfX is the matrix with rows (1, yt−1, zt−1) and Y = (y1, . . . , yT )′,

then the OLS estimator is

θ̂OLS = (X ′X)−1X ′Y

= θ + (X ′X)−1X ′U − (X ′X)−1


∑

t: yt=0

(α + βyt−1 + γzt−1 + ut)∑
t: yt=0

(α + βyt−1 + γzt−1 + ut)yt−1∑
t: yt=0

(α + βyt−1 + γzt−1 + ut)zt−1


(1)

The term (X ′X)−1X ′U converges to zero as T goes to infinity by the law of large numbers,

because (1, yt−1, zt−1) is independent of ut. However, the last term does not converge to zero:

1

T


∑

t: yt=0

(α + βyt−1 + γzt−1 + ut)∑
t: yt=0

(α + βyt−1 + γzt−1 + ut)yt−1∑
t: yt=0

(α + βyt−1 + γzt−1 + ut)zt−1


P−−−→

T→∞

 E(α + βyt−1 + γzt−1 + ut)1(ut < −α− βyt−1 − γzt−1)
E(α + βyt−1 + γzt−1 + ut)yt−11(ut < −α− βyt−1 − γzt−1)
E(α + βyt−1 + γzt−1 + ut)zt−11(ut < −α− βyt−1 − γzt−1)

 ,

where the expectations do not equal to zero. Thus, OLS is inconsistent. Moreover, each

term in the expectation is negative when the indicator equals to 1. So OLS overestimates

the coefficients as T goes to infinity. �
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The advantage of the OLS procedure is the closed form for the estimator. We also recall

that in the linear models the OLS estimator is more efficient than the LAD. These two

properties motivate us to attempt to adjust the OLS procedure to restore consistency.

The idea of the modified procedure is the following: when yt−1 (zt−1) is large, while zt−1

(yt−1) is small, we can treat the constant and the second regressor as part of an error. Thus,

we are left effectively with the classical autoregression model and can use standard theory.

Mathematically, to estimate β, we need to condition on T1M = {t|yt > 0, yt−1 > M, zt−1 <

M/h(M)} for some number M > 0 and function h(·) such that h(M) −−−−→
M→∞

∞. When M

is large, −α − βyt−1 − γzt−1 is very negative, so the indicator 1(ut < −α − βyt−1 − γzt−1)
almost always equals zero, and the last term in Eq. (1) disappears as T → ∞. Similarly,

we can condition on T2M = {t|yt > 0, yt−1 < M/h(M), zt−1 > M} to recover γ. The next

theorem, which is proved in the Appendix, summarizes the above heuristics.

Theorem S2. Separate OLS estimates of β and γ based on T1M and T2M are consistent,

respectively, as (M,T )seq →∞:∑
T1M

yt−1yt∑
T1M

y2t−1

P−−−−−−−→
(M,T )seq→∞

β,

∑
T2M

zt−1yt∑
T2M

z2t−1

P−−−−−−−→
(M,T )seq→∞

γ.

After β and γ are estimated, one can estimate α using

(2)
1

|T1M |+ |T2M |
∑

T1M∪T2M

(yt − βyt−1 − γzt−1)
P−−−−−−−→

(M,T )seq→∞
α.

Proof. Define β̂ =

∑
T1M

yt−1yt∑
T1M

y2t−1
and γ̂ =

∑
T1M

zt−1yt∑
T1M

z2t−1
. Let us show that β̂

P−−−−−−−→
(M,T )seq→∞

β. The proof

for γ̂ is the same.

β̂ =

∑
T1M

yt−1yt∑
T1M

y2t−1
= β +

∑
T1M

(α + γzt−1 + ut)yt−1∑
T1M

y2t−1

P−−−→
T→∞

β +
αE(yt−1|T1M) + γE(yt−1zt−1|T1M) + E(utyt−1|T1M)

E(y2t−1|T1M)
.

First note that ut and yt−1 are independent and E(ut|T1M) −−−−→
M→∞

0. Then E(yt−1|T1M )

E(y2t−1|T1M )
≤

E(yt−1|T1M )
E(Myt−1|T1M )

= 1
M
−−−−→
M→∞

0. Finally, by Cauchy–Schwarz inequality, E(yt−1zt−1|T1M) ≤√
E(y2t−1|T1M)E(z2t−1|T1M) so that E(yt−1zt−1|T1M )

E(y2t−1|T1M )
≤
√

E(z2t−1|T1M )

E(y2t−1|T1M )
≤
√

M2/h2(M)
M2 = 1

h(M)
−−−−→
M→∞

0.

Thus, β̂
P−−−−−−−→

(M,T )seq→∞
β.



EVOLUTION OF NETWORKS: SUPPLEMENTARY MATERIAL. 3

Finally, notice that both under T1M and T2M ,

α + ut = yt − βyt−1 − γzt−1,

so that

1

|T1M |+ |T2M |
∑

T1M∪T2M

(yt − βyt−1 − γzt−1) = α +
1

|T1M |+ |T2M |
∑

T1M∪T2M

ut

P−−−→
T→∞

α + E(u|T1M ∪ T2M)

and

α + E(u|T1M ∪ T2M) −−−−→
M→∞

α + Eu = α. �

In practice, to estimate α we need to use a different, smaller threshold. That is, we first

estimate β and γ based on some M1 and then we plug the estimates into Eq. (2), evaluated

at M2 < M1, to estimate α.

Let us note, that in practice we can use a simpler procedure. We denote it as OLSM.

One can condition on TM := {t|yt > 0, yt−1 > M} for some M > 0 and run OLS with

three regressors. The problem here is that the limit behavior of the inverse of conditional

matrix

 1 E(y|TM) E(z|TM)

E(y|TM) E(y2|TM) E(yz|TM)

E(z|TM) E(yz|TM) E(z2|TM)


−1

is unclear. It may crucially depend on the

properties of the error distribution. As long as post-multiplication by the vector of cross

product covariances (0, Cov(yt−1, ut|TM), Cov(zt−1, ut|TM))′ results in the zero vector in the

limit, the sequential limit of the corresponding OLS estimate equals (α, β, γ). That is, the

inverse matrix must not explode faster than the conditional covariance vector goes to zero.

This is summarized in the next theorem.

Theorem S3. The sequential limit (M,T )seq → ∞ of the OLS estimator based on t ∈ TM
equals the true value (α, β, γ) when the product 1 E(yt−1|TM) E(zt−1|TM)

E(yt−1|TM) E(y2t−1|TM) E(yt−1zt−1|TM)

E(zt−1|TM) E(yt−1zt−1|TM) E(z2t−1|TM)


−1 0

Cov(yt−1, ut|TM)

Cov(zt−1, ut|TM)


converges to zero as M →∞.
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Proof. Conditional on TM , the OLS estimate equals to

 α

β

γ

+


∑
TM

1
∑
TM

yt−1
∑
TM

zt−1∑
TM

yt−1
∑
TM

y2t−1
∑
TM

yt−1zt−1∑
TM

zt−1
∑
TM

yt−1zt−1
∑
TM

z2t−1


−1

∑
TM

ut∑
TM

yt−1ut∑
TM

zt−1ut


P−−−→

T→∞

 α

β

γ

+


1 E(yt−1|TM) E(zt−1|TM)

E(yt−1|TM) E(y2t−1|TM) E(yt−1zt−1|TM)

E(zt−1|TM) E(yt−1zt−1|TM) E(z2t−1|TM)


−1

Eut
E(yt−1ut|TM)

E(zt−1ut|TM)

.

Let us rewrite the second term. The goal is to show that it converges to zero as M →∞.
1 E(yt−1|TM) E(zt−1|TM)

E(yt−1|TM) E(y2t−1|TM) E(yt−1zt−1|TM)

E(zt−1|TM) E(yt−1zt−1|TM) E(z2t−1|TM)


−1

Eut
E(yt−1ut|TM)

E(zt−1ut|TM)



=


1 E(y|TM) E(z|TM)

E(y|TM) E(y2|TM) E(yz|TM)

E(z|TM) E(yz|TM) E(z2|TM)


−1

·

E(u|TM)

 1

E(y|TM)

E(z|TM)

+

 0

E(yu|TM)− E(y|TM)E(u|TM)

E(zu|TM)− E(z|TM)E(u|TM)




= E(u|TM)

 1

0

0

+


1 E(y|TM) E(z|TM)

E(y|TM) E(y2|TM) E(yz|TM)

E(z|TM) E(yz|TM) E(z2|TM)


−1

0

Cov(y, u|TM)

Cov(z, u|TM)

.

Because E(u|TM)→ Eu = 0 as M →∞, the first term converges to zero. By assumption,

the second term also converges to zero. (Note that as M → ∞ the correlation between

ut and yt−1 drops to zero, so that Cov(yt−1, ut|TM) → 0. Similarly, Cov(zt−1, ut|TM) → 0.

However, the behavior of the inverse matrix per se is unclear.)

Thus, sequential limit of the OLS estimate based on TM equals the true values of the

parameters. �

In simulations, the product of the inverse conditional matrix of second moments and the

conditional covariance vector goes to zero. Thus, in the empirical example studied below we

use the above procedure to calculate adjusted OLS estimates. Moreover, as the next theorem

suggests, when there are no peer effects (γ ≡ 0) and both ut and yt have exponential tails,

the product goes to zero. When there is no γ, the product of the inverse conditional matrix

of second moments and the conditional covariance vector reduces to
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(
1 E(yt−1|TM)

E(yt−1|TM) E(y2t−1|TM)

)−1(
0

Cov(yt−1, ut|TM)

)

=
1

V(yt−1|TM)

(
−E(yt−1|TM)Cov(yt−1, ut|TM)

Cov(yt−1, ut|TM)

)

Theorem S4. Assume that the stationary distribution of yt has density fy(x) for large

positive x and that the noise ut has density fu(x) for large negative x. Further, assume that

there exist six positive constants c1, c2, c3, d1, d2, d3 > 0, such that for all large enough positive

x:

(3) fy(x) = exp(−gy(x)), where c1x
d1 ≤ g′y(x) ≤ c2x

d2

and for all large enough negative x:

(4) fu(x) = exp(−gu(x)), where gu(x) ≥ c3|x|d3 .

Then the vector 1
V(yt−1|TM )

(
−E(yt−1|TM)Cov(yt−1, ut|TM)

Cov(yt−1, ut|TM)

)
goes to 0 as M →∞, i.e. the

OLSM estimate is consistent as M →∞.

Proof. Because g′y(x) ≥ c1x
d1 , for any x ≥M g′y(x) ≥ c1M

d1 and

P(yt−1 > M) =

∞∫
M

fy(x)dx =

∞∫
M

e−gy(x)dx = e−gy(M)

∞∫
M

e
−

x∫
M

g′y(w)dw
dx

≤ e−gy(M)

∞∫
M

e−c1M
d1 (x−M)dx ≤ e−gy(M) 1

c1Md1
≤ e−gy(M),

(5)

where the last inequality holds for M large enough.

We want to show that conditional variance of yt−1 is polynomial in M−1. To do this, let

us show that if a variance of a random variable X is bounded from below by C > 0 on some

interval [a, b], then VX ≥ C
8

(b− a)3:

VX =

∫
R

(x− EX)2fX(x)dx ≥ C

b∫
a

(x− EX)2dx ≥ C

b−a
2∫

0

x2dx =
C

24
(b− a)3,(6)

where the last inequality holds because if a+ b−a
2
≥ EX then (x−EX)2 ≥

(
x− a− b−a

2

)2
for

x ∈ [a+(b−a)/2, b] and if a+ b−a
2
≤ EX then (x−EX)2 ≥ (x− a)2 for x ∈ [a, a+(b−a)/2].



6 ANNA BYKHOVSKAYA

Consider the interval ∆ = [M,M + (c2M
d2)−1]. Because fy(x) = e−gy(x) and g′y > 0, the

density of y is decreasing for x ∈ ∆ for M large enough. Thus, for x ∈ ∆,

fy(x) ≥ fy(M + (c2M
d2)−1) = exp(−gy(M + (c2M

d2)−1))

≥ exp(−gy(M)− g′y(M + (c2M
d2)−1)(c2M

d2)−1)

≥ exp(−gy(M)) exp(−c2(M + (c2M
d2)−1)d2(c2M

d2)−1)

= exp(−gy(M)) exp(−(1 + (c2M
d2+1)−1)d2) ≥ exp(−gy(M))e−2

d2 .

(7)

Therefore, combining Eq. (5) and Eq. (7), for x ∈ ∆,

fyt−1|TM (x) = fy(x)/P(yt−1 > M) ≥ e−gy(M)e−2
d2/e−gy(M) = e−2

d2 .

Using the bound from Eq. (6), we get

V(yt−1|TM) =

∫
(x− E(yt−1|TM))2 fy(x)dx ≥ 1

24e2
d2

(c2M
d2)−3.(8)

Let us show that the conditional expectation of yt−1 does not grow faster than linearly in

M .

E(yt−1|TM) =

∞∫
M

x
fy(x)

P(yt−1 > M)
dx =

∞∫
M

xe−gy(x)dx

∞∫
M

e−gy(x)dx

≤
2

2M∫
M

xe−gy(x)dx

∞∫
M

e−gy(x)dx

≤ 4M

2M∫
M

e−gy(x)dx

∞∫
M

e−gy(x)dx

≤ 4M,

(9)

where the first inequality comes from the fact that xe−gy(x) is decreasing exponentially, so

that for M large enough
2M∫
M

xe−gy(x)dx >
∞∫

2M

xe−gy(x)dx.

We are left with analyzing conditional covariance between yt−1 and ut.

Cov(yt−1, ut|TM) = E (yt−1E (ut − E(ut|TM)|yt−1) |TM)

=

∞∫
M

x

∞∫
−α−βx

v
fu(v)

P(ut > −α− βx)
dv

fy(x)

P(yt−1 > M)
dx− E(yt−1|TM)E(ut|TM).

(10)

First, note that, for x ≥M ,

P(ut > −α− βx) ≥ P(ut > −α− βM) = 1−
−α−βM∫
−∞

fu(v)dv ≥ 1−
−α−βM∫
−∞

e−c3|v|
d3dv −−−−→

M→∞
1,

(11)

so that P(ut > −α− βx) ≥ 0.5 for M large enough.
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Second, because Eu = 0,

∞∫
−α−βx

vfu(v)dv = −
−α−βx∫
−∞

vfu(v)dv =

−α−βx∫
−∞

(−v)e−gu(v)dv ≤
−α−βx∫
−∞

(−v)e−c3|v|
d3dv

≤ 2(α + βx)e−c3(α+βx)
d3 ,

(12)

where the last inequality holds for M large enough as the integrand decreases exponentially.

Third, using Eq. (12),

E(ut|TM) =

∞∫
M

∞∫
−α−βx

u
fu(v)

P(ut > −α− βx)
dv

fy(x)

P(yt−1 > M)
dx

≤
∞∫

M

2(α + βx)e−c3(α+βx)
d3 fy(x)

P(ut > −α− βx)P(yt−1 > M)
dx

≤
∞∫

M

4(α + βx)e−c3(α+βx)
d3 fy(x)

P(yt−1 > M)
dx

= 4E
(

(α + βyt−1)e
−c3(α+βyt−1)d3 |TM

)
≤ 4(α + βM)e−c3(α+βM)d3 ,

(13)

because the function under expectation is decreasing in y for M large enough.

Plugging Eq. (9), (12), and (13) into Eq. (10), we get

|Cov(yt−1, ut|TM)|

≤ 4

∞∫
M

x(α + βx)e−c3(α+βx)
d3 fy(x)dx

P(yt−1 > M)
+ 16M(α + βM)e−c3(α+βM)d3

≤ 4M(α + βM)e−c3(α+βM)d3 + 16M(α + βM)e−c3(α+βM)d3 .

(14)

Combining Eq. (8) and (14), we get

|Cov(yt−1, ut|TM)|
V(yt−1|TM)

≤ 24e2
d2 4M(α + βM)e−c3(α+βM)d3 + 16M(α + βM)e−c3(α+βM)d3

(c2Md2)−3
−−−−→
M→∞

0.

Combining Eq. (8), (9) and (14), we get

E(yt−1|TM)|Cov(yt−1, ut|TM)|
V(yt−1|TM)

≤ 96e2
d2M

4M(α + βM)e−c3(α+βM)d3 + 16M(α + βM)e−c3(α+βM)d3

(c2Md2)−3
−−−−→
M→∞

0.
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So that 1
V(yt−1|TM )

(
−E(yt−1|TM)Cov(yt−1, ut|TM)

Cov(yt−1, ut|TM)

)
−−−−→
M→∞

0. �

Remark S1. The conditions (3), (4) mean that both the noise and the stationary distribu-

tion have light tails. The condition (3) additionally requires that the tail probability of the

stationary distribution of yt does not decay too fast. These conditions are not intended to

be optimal and can likely be considerably weakened. Instead, they are intended to illustrate

the type of conditions where Theorem 3 holds.

The disadvantage of the adjusted OLS procedures is that we have to discard a lot of

observations. Moreover, it is unclear how to choose M and h(M). The tradeoff is that

the larger is M , the more observations we have to discard, yet the closer to the consistent

limit we are. Thus, we see that as we restore the consistency by increasing M , we lose the

efficiency of the estimator.

2. Maximum likelihood estimator

Suppose that we know the density, fu, of the error ut. Then we can calculate the likelihood.

It will consist of two types of terms. The first type corresponds to the cases when yt is non-

zero, the positive part is non-binding, so we can write yt = α + βyt−1 + γzt−1 + ut or

ut = yt − α− βyt−1 − γzt−1. The second type corresponds to time periods with yt = 0. If yt

is zero, then it is equivalent to α + βyt−1 + γzt−1 + ut being non-positive. That is, yt = 0 is

equivalent to ut ≤ −α− βyt−1 − γzt−1. Thus, the likelihood and its logarithm are

L =
∏
t: yt>0

fu(yt − α− βyt−1 − γzt−1)×
∏
t: yt=0

Fu(−α− βyt−1 − γzt−1),

logL =
∑
t: yt>0

log fu(yt − α− βyt−1 − γzt−1) +
∑
t: yt=0

logFu(−α− βyt−1 − γzt−1).
(15)

Following common practice, we assume a normal distribution for ut. It turns our, as the

Theorem 5 shows, that when the true distribution is normal, the MLE produces consistent

estimators. However, as the simulations suggest, and in agreement with the well-known

results in the i.i.d. censored regression model, when the true distribution is far from normal,

the estimates are poor. Moreover, numerical optimization is very sensitive to the choice of

the initial point and the calculations for the MLE sometimes explode.

The proof of Theorem 5, which is shown below, uses extremum estimation techniques. In

a similar spirit it is possible to show
√
T - asymptotic normality of the MLE estimator under

Gaussian errors.

Theorem S5. If ut ∼ i.i.d.N (0, σ2), then MLE is consistent.
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Proof. Define θ = (α, β, γ, σ) and assume that θ0 is the true value of θ. MLE estimate θ̂

maximizes sample log-likelihood, Qn. The sample and population log-likelihoods are

Qn(θ) =
1

T

T∑
t=1

[
log fy(yt|yt−1, zt−1, θ)1(yt > 0) + logFy(0|yt−1, zt−1, θ)1(yt = 0)

]
=

1

T

T∑
t=1

[
log fu(yt − α− βyt−1 − γzt−1|yt−1, zt−1, θ)1(yt > 0)

+ logFu(−α− βyt−1 − γzt−1|yt−1, zt−1, θ)1(yt = 0)
]

(16)

and

Q(θ) = E
[
log fy(yt|yt−1, zt−1, θ)1(yt > 0) + logFy(0|yt−1, zt−1, θ)1(yt = 0)

]
= E

[
log fu(yt − α− βyt−1 − γzt−1|yt−1, zt−1, θ)1(yt > 0)

+ logFu(−α− βyt−1 − γzt−1|yt−1, zt−1, θ)1(yt = 0)
]
,

(17)

where expectation is taken with respect to yt, yt−1, zt−1.

Let us first show that θ0 uniquely minimizes Q.

Q(θ)−Q(θ0) = E(log fy(yt|yt−1, zt−1, θ)− log fy(yt|yt−1, zt−1, θ0))1(yt > 0)

+ E(logFy(0|yt−1, zt−1, θ)− logFy(0|yt−1, zt−1, θ0))1(yt = 0).
(18)

First note, that

E1(yt = 0) logFy(0|yt−1, zt−1, θ) = E logFy(0|yt−1, zt−1, θ) (E (1(yt = 0)|yt−1, zt−1))

= E logFy(0|yt−1, zt−1, θ)Py(0|yt−1, zt−1) = E logFy(0|yt−1, zt−1, θ)Fy(0|yt−1, zt−1, θ0).

Then, because log x ≤ x− 1,

E(logFy(0|yt−1, zt−1, θ)− logFy(0|yt−1, zt−1, θ0))1(yt = 0)

= E log

(
Fy(0|yt−1, zt−1, θ)
Fy(0|yt−1, zt−1, θ0)

)
Fy(0|yt−1, zt−1) ≤ E (Fy(0|yt−1, zt−1, θ)− Fy(0|yt−1, zt−1, θ0)) .

(19)
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Similarly,

E(log fy(yt|yt−1, zt−1, θ)− log fy(yt|yt−1, zt−1, θ0))1(yt > 0)

= E log

(
fy(yt|yt−1, zt−1, θ)
fy(yt|yt−1, zt−1, θ0)

)
1(yt > 0) ≤ E

(
fy(yt|yt−1, zt−1, θ)
fy(yt|yt−1, zt−1, θ0)

− 1

)
1(yt > 0)

= E
(
E
((

fy(yt|yt−1, zt−1, θ)
fy(yt|yt−1, zt−1, θ0)

− 1

)
1(yt > 0)|yt−1, zt−1

))
= E

∫
(fy(yt|yt−1, zt−1, θ)− fy(yt|yt−1, zt−1, θ0))1(yt > 0)dyt

= (1− EFy(0|yt−1, zt−1, θ))− (1− EFy(0|yt−1, zt−1, θ0))

= E (Fy(0|yt−1, zt−1, θ0)− Fy(0|yt−1, zt−1, θ))

(20)

Plugging Eq. (19) and (20) into Eq. (18), we get

Q(θ)−Q(θ0) ≤ E (Fy(0|yt−1, zt−1, θ)− Fy(0|yt−1, zt−1, θ0))

+ E (Fy(0|yt−1, zt−1, θ0)− Fy(0|yt−1, zt−1, θ)) = 0.

Thus, θ0 minimizes Q. Moreover, equality holds only when

P (fy(yt|yt−1, zt−1, θ) = fy(yt|yt−1, zt−1, θ0)) = 1, which can not happen for gaussian

errors with density fy(yt|yt−1, zt−1, θ) = 1√
2πσ2

exp
(
− 1

2σ2 (yt − α− βyt−1 − γzt−1)2
)
.

To apply the theorem for extremum estimators, we need to reduce the domain of θ to a

compact space. That is, we need to show that when some of the parameters go to infinity,

Qn goes to minus infinity and, thus, such values can not be solutions to maxQn. Here we

are going to use the fact that fu(x) = 1√
2πσ2

ex
2/2σ2

. Let us plug the density into Eq. (16):

Qn =
1

T

T∑
t=1

(
−0.5 log(2πσ2)− 1

2σ2
(yt − α− βyt−1 − γzt−1)2

)
1(yt > 0)

+
1

T

T∑
t=1

−0.5 log(2πσ2) + log

−α−βyt−1−γzt−1∫
−∞

e−u
2/2σ2

du

1(yt = 0)

(21)

If σ goes to infinity, then −0.5 log(2πσ2) → −∞, while other terms remain non-positive:
A∫
−∞

e−u
2/2σ2

du ≤
√

2πσ. Thus, Qn → −∞ when σ →∞ independently of the values of other

parameters, and we can restrict σ to a bounded interval.

After we know that σ is bounded, we can guarantee that the se-

cond summation is bounded by zero from above for any values of α, β, γ:(
−0.5 log(2πσ2) + log

−α−βyt−1−γzt−1∫
−∞

e−u
2/2σ2

du

)
≤ −0.5 log(2πσ2) + 0.5 log(2πσ2) = 0.

When |α| goes to infinity or |β| → ∞ or |γ| → ∞, we have (yt − α− βyt−1 − γzt−1)2 →∞.
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Note that as y and z are random with correlation below one, parameters can not compen-

sate each other. Thus, Qn → −∞ as |α| → ∞ or β → ∞ or |γ| → ∞. Therefore, those

parameters can also be restricted to bounded intervals. Thus, we are left with compact set.

Plugging the density of u into Eq. (17), we get

Q(θ) = E
(
−0.5 log(2πσ2)− 1

2σ2
(yt − α− βyt−1 − γzt−1)2

)
1(yt > 0)

+ E

−0.5 log(2πσ2) + log

−α−βyt−1−γzt−1∫
−∞

e−u
2/2σ2

du

1(yt = 0).

(22)

Function under expectation in Eq. (22),

g(yt, yt−1, zt−1, θ) :=

(
−0.5 log(2πσ2)− 1

2σ2
(yt − α− βyt−1 − γzt−1)2

)
1(yt > 0)

+

−0.5 log(2πσ2) + log

−α−βyt−1−γzt−1∫
−∞

e−u
2/2σ2

du

1(yt = 0),

is continuous at every θ with probability 1 and, because parameters are restricted to a

compact set, E sup
θ
|g(yt, yt−1, zt−1, θ)| is finite.

Finally, we can apply Proposition 7.3 (Consistency of M -estimators with compact para-

meter space) from ?. Our model satisfies all the conditions of the proposition. Thus, the

MLE estimate θ̂ is consistent. �

3. Omitted proofs

3.1. Finite time until the network is empty.

Lemma S6. If Assumptions 1, 2, and 5 are satisfied, Eu4ijt <∞ for all i, j, t, and for all i, j

max(0, βij) + |γij| < C < 1, then E(time until graph is empty for H periods) is finite. That

is, the expected time until yijt = . . . = yij,t+H−1 = 0 for all i, j is finite.

Proof. Denote by ūt = {uijt}i,j the vector of all errors at time t. Fix some number M > 0

(it will be specified later) and define three independent random variables

ū−t = {{uijt}i,j|uijt < −M ∀i, j},

ū+t = {{uijt}i,j|ui′j′t ≥ −M for some i′, j′},

ξt =

{
0,with probability P(∀i, j uijt < −M),

1,with probability P(∃i, j s.t. uijt ≥ −M).

Then

(23) ūt
d
= ξtū

+
t + (1− ξt)ū−t .
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Fix realizations of (ū+t , ū
−
t , ξt) for t = 1, . . . , T and calculate the corresponding ūt from Eq.

(23). Define

vt = |A|+ max
s=t,...,t−H+1

i,j

[
u+ijs + αij

]
+
≥ 0.

Now construct a new time series

y′t = C max
s=t−1,...,t−H

y′s + vt,

y′p = max
i,j

yijp for p = 0, . . . , H − 1.

One can easily show by induction that y′t ≥ yijt for all i, j, t.

By the same argument as in proof of Theorem 1, we can divide time periods into blocks

of length H and get a bound

(24) y′t+p ≤ C max
s=t−1,...,t−H

y′s +
H−1∑
s=0

vt+s for all p = 0, . . . , H − 1.

Now define another random process and error, xτ = max
s=(τ−1)H,...,τH−1

y′s, wτ =
H−1∑
s=0

v(τ−1)H+s.

Then by Eq. (24),

xτ+1 ≤ Cxτ + wτ+1.

We need to find M such that for some ε > 0, P(]{τ ∈ [1, . . . , bT/Hc]|xτ < M} ≥ εT ) ≥ 1
T 2

and P(∀i, j uijt < −M) > 0. This is a condition on uijt which generally may fail to be true.

For example, if uijt are almost surely larger than some positive constant. Let us show that

such M exists under assumptions 2 and Euijt < C4 <∞. Assumption 2 implies that for all

M large enough P(∀i, j uijt < −M) > 0.

Let us show that if Euijt < C4 < ∞, then Ewτ < C̃4 < ∞, and constant C̃4 does not

depend on M . Note that the fourth moment of u+ijt is bounded as

E|u+ijt|4 ≤ E|u4ijt|
1

P(∃i, j s.t. uijt ≥ −M)
.

Further, as |wτ | =
H−1∑
s=0

v(τ−1)H+s, it is less than the sum of absolute values of several instances

of u+ijt and constants. Thus, the fourth moment of the sum can be bounded by a combination

of the individual fourth moments, which are bounded. As M → ∞, P(∃i, j s.t. uijt ≥
−M)→ 1, so that setting a lower bound for M to be such that P(∃i, j s.t. uijt ≥ −M ′) = 0.5,

we get a bound which does not depend on M > M ′ and then E|u+ijt|4 ≤ 2E|u4ijt|.
Define one more process, x̃τ , by

x̃τ+1 = Cx̃τ + wτ+1, x̃1 = x1.

It can be shown by induction, that for all τ , x̃τ ≥ xτ . Thus, it is enough to show that

P(]{τ ∈ [1, . . . , T/H]|x̃τ < M} ≥ εT ) ≥ 1
T 2 . Let us show that ∃Q such that x̃1 + x̃2 + . . .+
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x̃bT/Hc < QbT/Hc with probability greater that 1− const
T 2 .

x̃1 + x̃2 + . . .+ x̃bT/Hc = x̃1 +

bT/Hc∑
τ=2

(wτ + Cwτ−1 + . . .+ Cτ−2w2 + Cτ−1x̃1)

≤ 1

1− C

bT/Hc∑
τ=1

wτ +
x̃1

1− C
.

The expectation of the right hand side of the last expression is 1
1−C (bT/HcEwτ + Ex1)

P

∣∣∣∣∣∣ 1

1− C

bT/Hc∑
τ=1

(wτ − Ewτ )

∣∣∣∣∣∣ > bT/Hc
 ≤ E

∣∣∣∣∣bT/Hc∑
τ=1

(wτ − Ewτ )

∣∣∣∣∣
4

(1− C)4bT/Hc4
≤ const · T 2

T 4
≤ const

T 2
,

where we used the fact that wτ − Ewτ are i.i.d. with zero mean and with bounded fourth

and second moments. Thus,

P

 1

1− C

bT/Hc∑
τ=1

wτ > QbT/Hc

 ≤ P

∣∣∣∣∣∣ 1

1− C

bT/Hc∑
τ=1

(wτ − Ewτ )

∣∣∣∣∣∣ > bT/Hc
 ≤ const

T 2
,

where Q = 1 + Ewτ
1−C . Thus,

P
(
x̃1 + x̃2 + . . .+ x̃bT/Hc < QbT/Hc

)
≥ P

 1

1− C

bT/Hc∑
τ=1

wτ +
x̃1

1− C
< QbT/Hc

 ≥ 1− const

T 2
.

(25)

Finally, if x̃1 + x̃2 + . . . + x̃bT/Hc < QbT/Hc, then x1 + . . . + xbT/Hc < QbT/Hc. The

latter implies that ]{τ |xτ > 2Q} < 0.5bT/Hc and ]{τ |xτ ≤ 2Q} > 0.5bT/Hc. That is, we

have shown that ∃M (any number larger than 2Q and M ′) such that ]{τ |xτ ≤ M} > εT

has probability greater than 1 − const
T 2 . For each such τ we flip a coin to determine ξt.

If it zero, then the whole process yijt jumps to zero. Thus, with probability of at most

(P(∃i, j s.t. uijt ≥ −M))εT the process does not jump to zero. Thus,

E(length until H zero periods) =
∞∑
T=1

P(length ≥ T )

≤
∞∑
T=1

(
const

T 2
+ (P(∃i, j s.t. uijt ≥ −M))εT

)
<∞. �

Corollary S7. If Assumptions 1 and 2 are satisfied for the model without γ and if β < 1,

then E(length until zero) is finite.

Proof. If β < 1 and there is no γ, max(0, β) + |γ| = max(0, β) < 1. Thus, Lemma 6

applies. �
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Lemma S8. If Assumptions 1 and 2 are satisfied, α < 0, β = 1 and if Eu4t < ∞, then

E(length until zero) is finite.

Proof. We can write the expected length until yt = 0 as

E(length until zero) =
∞∑
T=1

P(length ≥ T ).(26)

Define St = y0 + tα+u1 + . . .+ut for all t ∈ N. If length until zero is greater than T , then

S1 > 0, . . . , ST−1 > 0. (Otherwise the process St becomes negative, so that non-negative

process yt becomes zero before T ). Thus, P(length ≥ T ) ≤ P(S1 > 0, . . . , ST−1 > 0). Note

that

P(S1 > 0, . . . , ST−1 > 0) = P

(
y0 + α + u1 > 0, . . . , y0 + (T − 1)α +

T−1∑
t=1

ut > 0

)

≤ P

(
y0 + (T − 1)α +

T−1∑
t=1

ut > 0

)
= P

(
T−1∑
t=1

ut > −y0 − (T − 1)α

)
.

Because α < 0, there exists T ′ such that ∀T > T ′ −y0− (T − 1)α > 0. Let us look at any

T > T ′.

P

(
T−1∑
t=1

ut > −y0 − (T − 1)α

)
≤ P

(∣∣∣∣∣
T−1∑
t=1

ut

∣∣∣∣∣ > −y0 − (T − 1)α

)
≤

E
∣∣∣∣T−1∑
t=1

ut

∣∣∣∣4
(y0 + (T − 1)α)4

=
(T − 1)Eu4 + 3(T − 1)(T − 2)Eu2

(y0 + (T − 1)α)4
≤ const

T 2
,

(27)

where we used Markov inequality to bound probability by expectation.

Plugging Eq. (27) into Eq. (26), we get

E(length until zero) ≤
∞∑
T=1

const

T 2
< const1 <∞. �

3.2. Explosive LAD.

Lemma S9. Consider the process yt+1 = [α+βyt +ut]+, β > 1. For any β′ ∈ (1, β), almost

surely exists T such that yt+1 > β′yt for all t > T .

Proof. Fix ε > 0. Denote vt = |α|+ |ut|. Write yt+1 ≥ βyt − vt. Iterating, we get

(28) yt+k ≥ βk

(
yt −

k∑
i=1

vt+i−1β
−i

)
Further, note

∑∞
i=1 vt+i−1β

−i is a positive finite random variable, whose distribution does

not depend on the choice of t. Choose large M > 2 such that this random variable is less

than M with probability greater than 1 − ε. By Classification Theorem (Theorem 3) we
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already know that almost surely yt −−−→
t→∞

∞. Thus, we can choose T such that yT > 2M

with probability greater than 1− ε. Then with probability greater than 1− 2ε, we have by

(28):

(29) yT+k ≥ βk(yT/2), for all k = 1, 2, . . . .

Let us call the event where (29) holds AT . We thus know that P(AT ) ≥ 1 − 2ε for large

enough T .

Next, consider the events

Bk = {|vT+k| > βk}.

Note that
∑

k P(Bk) < ∞, since vt is a random variable, whose distribution does not

depend on t and whose expectation exists. Therefore, there exists K such that for the event

CK = {vT+k ≤ βk for all k > K}, P(CK) ≥ 1−
∑∞

k=K P(Bk) > 1− ε.
Now consider the event D = AT ∩CK . We have P(D) ≥ 1− (P(¬AT ) +P(¬CK)) > 1− 3ε.

On the other hand, on this event, for each t > T +K, we have

(30) yt+1 ≥ βyt − vt = β′yt + (β − β′)yt
(

1− vt
yt

)
Since yt ≥ yT

2
βt−T > Mβt−T > 2βt−T and vt ≤ βt−T , the last term in (30) is positive and

we conclude that yt+1 ≥ β′yt, as desired.

Since ε > 0 was arbitrary, we conclude that with probability 1 for all large enough t,

yt+1 ≥ β′yt, as desired. �
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